
                                                                           
                           AD_________________ 

 
 
 
AWARD NUMBER:  W81XWH-05-1-0278     
 
 
 
TITLE:  Image Processing and Computer Aided Diagnosis in Computed Tomography of 
the Breast 
 
 
 
PRINCIPAL INVESTIGATOR: Jessie Qing Xia, Ph.D.  
 
 
 
CONTRACTING ORGANIZATION:  Duke University  
                                                         Durham, North Carolina  27710  
  
 
REPORT DATE:  March 2006 
 
 
 
TYPE OF REPORT:  Annual Summary  
 
 
 
PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
                                Fort Detrick, Maryland  21702-5012 
                 
 
DISTRIBUTION STATEMENT: Approved for Public Release;  
                                                  Distribution Unlimited 
 
 
 
The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
01-03-2006 

2. REPORT TYPE
Annual Summary 

3. DATES COVERED (From - To)
1 Mar 2005 – 28 Feb 2006 

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

Image Processing and Computer Aided Diagnosis in Computed Tomography of the 
Breast 

5b. GRANT NUMBER 
W81XWH-05-1-0278 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

Jessie Qing Xia, Ph.D. 5e. TASK NUMBER 
 

E-Mail:   qing.xia@duke.edu  5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER

Duke University                                                             
Durham, North Carolina  27710

 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research and Materiel Command   

Fort Detrick, Maryland  21702-5012   
 11. SPONSOR/MONITOR’S REPORT 
        NUMBER(S)
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited  
 
 
 

13. SUPPLEMENTARY NOTES
  

14. ABSTRACT  
 
A novel breast cancer imaging technique – dedicated cone-beam breast CT – is currently under development. It is designed to deliver low dose to a patient 
while removing the superposition of breast tissues, which is a limiting factor of the conventional mammography technique. The new technique will particularly 
benefit women with dense breasts. The development of the breast CT imaging technique requires effective and efficient ways to reduce its scattered radiation 
as well as denoising so as to provide high quality images and help make diagnostic decisions. Therefore, it is important to investigate different possible image 
processing tools and decide which one is better based on image quality metrics such as contrast-to-noise ratio (CNR) as well as the observer performance 
study via a receiver operating characteristic (ROC) analysis. The raw breast CT data has been successfully reconstructed via the Feldkamp filtered back 
projection (FBP) algorithm for cone-beam geometry. A Gaussian noise model taking into account the energy-integrating characteristic of a flat-panel detector 
has been developed. Based on this model, the maximum likelihood estimate of the scatter free image via the expectation maximization (EM) algorithm has 
been derived. A partial diffusion equation based image denoising technique has been implemented. 

15. SUBJECT TERMS
breast CT, scatter compensation, denoising, breast imaging, CAD, cone-beam CT 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT

18. NUMBER 
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
USAMRMC  

a. REPORT 
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

 
UU 

 
72   

19b. TELEPHONE NUMBER (include area 
code)
 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

mailto:qing.xia@duke.edu


 

 

 
 
 

Table of Contents 
 

 
 

Introduction……………………………………………………….…………..............................................1 

Report Body………………………………………………………………………………..……………….2 

Key Research Accomplishments.…………………………………….………………………………..…..5 

Reportable outcomes……..………………………………………………………………..………………. 6 

Conclusions……………………………………………………………………………..………………….. 6

References……………………………………………………………………………………….…………. 7 

Appendices……………………………………………………………………………….…………….…. 10 



 1

Introduction 

1. Clinical Relevance: Breast Cancer  

Breast cancer is the most common cancer type that affects women globally [1]. In the 
United States, due to the long life spans, the incidence is even higher: every one woman 
over eight will develop breast cancer in her lifetime. It was estimated that approximately 
211,240 new invasive breast cancer cases and 58,490 new in situ cases would be found in 
American women in 2005 [2]. Moreover, the disease is the second leading cause of 
cancer-related death for women in the United States, which was predicted to kill 40,870 
women in 2005 [2].  

Presently there is no effective way of preventing the disease. However, the detection of 
the cancer at its early stage has been found to significantly improve the survival rates [3-
6]. For example, when the breast cancer is detected at the localized stage, the five year 
relative survival rate is 98% [2]. By contrast, when it is not found until metastasized, the 
five year survival rate drops dramatically. In addition, when the cancer is found earlier, 
more viable treatment options are also available [7-9]. 

X-ray mammography is a successful tool for the early detection of the breast cancer. The 
abnormalities can manifest themselves on a mammogram as either masses, clusters of 
microcalcifications, or architectural distortions even before any symptom shows up. An 
annual screening program based on mammography is recommended for women older 
than forty years or younger women with high risk by National Cancer Institute, American 
Cancer Society and American College of Radiology. It has been proven to reduce the 
mortality rate of the breast cancer since its initiation. For example, screening 
mammography decreases the fifteen year mortality for women in their forties by 20% 
[10]. Also, it is found that screening is most effective for women older than 55 years old 
[10, 11]. 

2. Limitation of Screening Mammography 

Film-screen X-ray mammography is presently the only FDA approved screening tool 
aiming at early detection of the breast cancer. While it has been proven to be effective, it 
is not omnipotent in its detection sensitivity of breast lesions due to several limitations 
such as two-dimensional (2D) projection data acquisition and restricted range of linear 
optical response of the detector. Overall, it has a sensitivity within the range of 63% to 
88% depending on the patient’s age group, family history [12] and breast density [13]. 
For women with dense breasts, the sensitivity is lower since in their mammograms the 
dense appearance of the breast tissue is more likely to obscure any abnormalities and 
makes the detection of breast cancer even more challenging [14]. In addition, the 
situation gets complicated by the fact that breast density is also a risk factor, which means 
that women with dense breasts tend to be more likely to get breast cancer.  

3. Emerging Dedicated Breast CT Imaging 

Breast CT technology offers the potential to detect breast lesions among women with 
dense breasts, which is a well-known challenging task in conventional film-screen X-ray 
mammography [15]. 
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The breast imaging via CT modality was first conducted in the late 1970s [16,17]. At that 
time the breast images were acquired slice-by-slice using x-ray fan-beam geometry. The 
long scan time, high patient dose together with the limited image quality prevented the 
further application of this technique.  

With the development of flat-panel detectors in recent years, the fast breast imaging via a 
cone-beam CT became possible and breast CT regained attention. So far, four research 
groups have fabricated their own dedicated breast CT systems and one research group has 
set up a virtual breast CT system by applying mathematical models. The four groups with 
actual breast CT systems are: Dr. Boone’s group in University of California, Davis 
[18,19], Dr. Tornai’s group in Duke University [20,21], Dr. Ning’s group in University of 
Rochester [22,23] and Dr. Shaw’s group in University of Texas M.D. Anderson Cancer 
Center [24, 25]. The one group with a virtual breast CT system is Dr. Glick’s group in 
University of Massachusetts [26, 27].  

In a conventional CT system, the x-ray tube/ detector move around the torso of a patient; 
whereas a dedicated breast CT system has a joint x-ray tube/detector move just around 
the breast. The system is normally set up in the following way: a patient lies supinely on 
a table with one breast hanging through a hole. The flat-panel detector is installed 
vertically and moves jointly with the x-ray tube.  

By this design of the dedicated system, the field of view (FOV) of the detector can be 
fully employed for breast imaging. What’s more, since no other tissues will attenuate the 
x-ray beam, the effective glandular dose delivered to the patient can be lowered to match 
the two-view screening mammograms for the same breast [28]. 

Although they share the same physical setup, the four breast CT systems differ in their 
detailed technical aspects: the choice of x-ray beam, the x-ray source orbit, and the peak 
voltage and tube current values used.  

The proposed project is a collaborative effort between our group at Duke and Dr. 
Boone’s group in University of California, Davis. Based on the raw data provided by 
them, we will develop the techniques for image improvement via the scatter 
compensation and/or denoising. 

Report Body 

In the approved statement of work (SOW), it was proposed that task 1 to 3 would be 
finished within the first fiscal year. What has been done so far basically follows the SOW 
with some minor changes, which will be stated in each subsection. 

Task 1: Develop and test a unique two-dimensional Bayesian image processing technique 
on the projection data of cone-beam breast Computed Tomography (breast CT) obtained 
without a grid. 

In the previous work [29], the Bayesian image estimation technique based on Poisson 
noise model has been successfully applied to reduce the scattering radiation in digital 
mammograms. While CT projections of the breast are similar enough to give us 
confidence in its eventual success, this application of BIP is unique and will present 
novel challenges. For example, in digital mammography, the projection images are the 
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ultimate images for display and diagnosis; whereas in breast CT, the diagnosis is based 
on the reconstructed images or its derivatives such as maximum intensity projection (MIP) 
[30]. To reconstruct the tomographic images, the projection images need to be converted 
the line integrals of attenuation coefficient via the logarithmic operation. It is expected 
the characteristics of the noise will be different because of the nonlinear operation. 
Therefore the component for noise constraining in the BIP, i.e. Gibbs prior, has been 
modified to incorporate this knowledge.  

In addition, while in previous implementations of BIP for digital chest and breast imaging 
a Poisson noise model was used, the flat-panel detectors actually are integrating detectors 
and so the Poisson noise model is not exactly correct. A more exact statistical model for 
the energy-integrating detector has been incorporated into the scatter compensation 
framework and the maximum likelihood estimate (MLE) of scatter-free image has been 
acquired via the expectation maximization (EM) algorithm. The details are shown as 
follows. 

1) Signal from an Energy-Integrating Detector 

To simplify the notion, assume that the x-ray spectrum impinging on the energy-
integrating detector is binned into the discrete energy bands. In our analysis, the primary 
x-ray photons surviving attenuation and the scattered photons will be analyzed separately, 
so there are x-ray spectrums for primary and scatter radiations respectively. Moreover, 
the x-ray spectrums are dependent on the attenuation material and its thickness.    
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Therefore, a Gaussian approximation of e is:  
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e ~ Gaussian(e ,e ⋅K µ2 +σ 2

µ
)+

,       (4) 

where ( )+ means that e can only take on the non-negative values. 

2) Gaussian noise model 
The Gaussian noise model for the scatter radiation is proposed as follows: 

 
 
 
 
where di, si, and yi represent respectively the primary, scatter and total radiations reaching 
a pixel i. The bi is the expectation of the primary radiation di at pixel i. B ={ bi , i=1,…,N} 
is its two-dimensional matrix representation. In addition, σi1

2 and σi2
2 represent the 

variance of the primary radiation and the variance of the scatter radiation in each pixel i.  

The EM algorithm for the MLE estimate of B based on the Gaussian noise model is 
derived via the steps shown in Appendix 2, and the updating equation for bk at iteration 
step n+1 is: 
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Other than the existence of a nice analytic formula for b, approximating the sum of 
energies e by a Gaussian distribution poses an additional advantage: the dark current (dc) 
and electronic readout noise can be easily incorporated into the framework. The 
electronic readout noise is usually represented by a Gaussian distribution with variance of 
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Task 2: Reconstruct the three-dimensional breast image based on the processed 
projection data from Task 1. 

An existing ordered subset expectation maximization (OSEM) algorithm for cone-beam 
CT was configured for tomographic reconstruction. However, there was some severe 
artifact in the reconstructed volume. The cause of the artifact has not been pinpointed yet. 
As an alternative, the Feldkamp type filtered back-projection (FBP) algorithm [33] was 
implemented. Fortunately, due to the sufficient sampling of the projection data and 
projection views, the FBP algorithm provided good reconstruction results. It is also 
computationally more efficient than the OSEM algorithm. Therefore, we feel that FBP 
algorithm is a good substitute for the OSEM algorithm for Task 2 in the approved SOW. 

Task 3: Apply the algorithm in Task 1 to the two-dimensional slices of the reconstructed 
three-dimensional breast image from the unprocessed projection data. 

The BIP algorithm in Task 1 has been set up primarily for image noise reduction and tried 
on the reconstructed slice image. Visually, the processed images are smoother than the 
original ones. Further evaluation will be conducted. 

Within the next two fiscal years, task 4 to 6 will be fulfilled. 
Task 4: Develop and test three-dimensional Bayesian image processing technique on the 
reconstructed image based on the unprocessed projection data acquired without a grid. 
Task 5: Develop a Computer Aided Diagnosis tool for detecting breast mass lesions 
based on the projection data. 
Task 6: Test and compare the performances of the CAD developed in Task 5 applied to 
processed projection data from Task 1 with the CAD performance on the projection data 
without Bayesian processing. 

Due to the limited cases available, a major change to Task 5 will be an addition of 3D 
mass simulation routine to generate multiple synthetic datasets as well as simplified ROC 
analysis. It is felt that this change won’t affect the overall structure of the project, since 
the primary goal of the proposed CAD tool is for the evaluation of the image processing 
techniques developed during the first two years of the grant. 

Key Research Accomplishments 

• Proposed a Gaussian noise model for scatter compensation when an energy-
integrating detector is used for image acquisition; 

• Derived the EM algorithm for the MLE estimate based on the Gaussian noise 
model; 

• Implemented the Feldkamp type FBP for the cone-beam CT; 
• Reconstructed the breast CT data; 
• Implemented a partial diffusion equation (PDE) based image denoising technique; 
• Compare the reconstructed volumes with and without the image processing by the 

metrics such as CNR; 
• Coded the Siddon algorithm for forward projection of 3D voxelized data using 

cone-beam geometry. 
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Reportable Outcomes 

• The PI finished a project titled ‘Gaussian Noise Model for Scatter Compensation 
in Digital Mammography’ and earned her Master of Science degree in statistics 
from Institute of Statistics and Decision Science (ISDS), Duke University. Please 
refer to Appendix 2. 

• The PI applied for the Sally Hughes-Schrader travel grant of Duke University for 
a potential site visit to the breast CT research group in University of California, 
Davis in the summer of 2006. 

Conclusions 

In summary, the development of dedicated cone-beam breast CT imaging technique 
requires effective and efficient ways to reduce its scattered radiation as well as denoising 
so as to provide high quality images and help make diagnostic decisions. Therefore, it is 
important to investigate different possible image processing tools and decide which one is 
better based on image quality metrics such as CNR as well as the observer performance 
study via a ROC analysis. 
A Gaussian noise model accounting for the energy-integrating characteristic of a flat-
panel detector has been developed. Based on this model, the MLE estimate of the scatter 
free image via the EM algorithm has been derived. A partial diffusion equation based 
image denoising technique has been implemented. 

The raw breast CT data has been successfully reconstructed via the Feldkamp FBP 
algorithm for cone-beam geometry. The reconstructed images totally eliminate the 
problem caused by the superposition of breast tissues which is the limitation of the 
conventional screening mammography. 
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Abstract 

Breast cancer is the most common cancer type that affects women worldwide. In the 

United States, every one woman over eight will develop breast cancer in her lifetime. 

Although no effective way of preventing the disease has been found, early detection 

of the cancer through noninvasive breast imaging is desirable because it warrants 

more choices of viable treatments and higher survival rates. Digital Mammography is 

among such imaging techniques.  

Compton scattering of x-ray photons is one mechanism of attenuating the x-ray 

beam, which in turn forms the contrast in a projection image. However, its detection 

in the projection image is a cause of image quality degradation since it will add noise 

to the image and reduce the contrast. Therefore many efforts are made to reduce the 

detected scatter radiation in the projection image either by applying some hardware 

during acquisition or by using post-acquisition software compensation. The method 

presented in this thesis belongs to the latter category. A Gaussian noise model for 

scatter is proposed and its EM ML estimation is derived. In addition, Bayesian MAP 

estimation is obtained by applying a Gibbs prior with a discontinuity adaptive 

potential function. 

The previously proposed Poisson noise model is flawed in that the radiation does 

not directly follow a Poisson distribution. Instead, a Gaussian distribution can 

reasonably describe the radiation data. When a computation method like Gibbs 



iii 

sampling is used, Poisson noise model will give erroneous results due to the incorrect 

modeling. The conversion factor between radiation and the number of photons is 

energy dependent. If it is approximated by a constant independent of energy, then the 

Poisson noise model can be justified through a latent data augmentation scheme 

when EM algorithm is used.  

The reason we pursue the EM computation in this thesis is that it has a nice 

analytic formula. Due to the large number of pixels in an image and the existence of 

a convolution operation, the computation can be greatly reduced with this analytic 

formula. 

The digital mammography image of a uniform breast phantom is processed by 

the MLE and MAP algorithms of Poisson model and Gaussian model. The results are 

compared through the image quality metrics like the residual scatter radiation, the 

contrast-to-noise ratio and the spatial resolution. 

From the results we get, it is shown that Gaussian noise model can be used to 

reduce the scatter radiation in the digital mammography images. Its performance is 

improved by incorporating Gibbs priors without loss of resolution. In addition, 

Gaussian noise model works slightly better in improving the contrast-to-noise ratio 

than the Poisson noise model. 
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Chapter 1 

Introduction 

1.1 Digital Mammography 

Breast cancer is the most common cancer type that affects women worldwide [1]. In 

the United States, every one woman over eight will develop breast cancer in her 

lifetime. And it was estimated that approximately 211,240 new cases of invasive 

breast cancer would be found in American women and the disease would kill 40,410 

women in 2005 [2]. Although there is no effective way of preventing the disease, it is 

desirable to find early signs of the cancer (e.g., impalpable masses and/or 

micro-calcifications) through noninvasive breast imaging techniques such as x-ray 

mammography. The detection of the cancer at its early stage warrants more choices 

of viable treatments and higher survival rates[3-5]. 

An x-ray mammography system is typically comprised of two major parts: the 

x-ray source and the detector. Depending on the type of the detector, the 

mammography system can be either analog or digital. The analog system utilizes a 

screen-film as the detector, and is the only FDA approved screening tool aiming at 

the early detection of the breast cancer for women more than 40 years old. While it 

has been proven to be effective, it has several shortcomings: 1) the analog film has 

narrow latitude. Overexposure or underexposure of the film will result in a poor 
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image which will be unacceptable for breast cancer detection and diagnosis. 2) The 

film development is critical for the quality of the mammogram as well as 

time-consuming. 3) The radiology department needs a lot of space and personnel to 

keep the films. And 4) the transfer of the films between departments or hospitals not 

only is a lot of hassle, but also causes the wear and tear of films, which is inevitable 

since they are often the only copies of the case. Due to these limitations of using 

films as the recording media, many radiology departments are trying to go film-less. 

It is realized by the digital mammography technique.  

A digital mammography system utilizes a flat-panel detector instead of a 

screen-film detector. Recent studies show that the diagnostic accuracy based on 

digital mammograms is comparable to those based on conventional film 

mammograms [6, 7]. In some situations, the digital mammography works even better 

[6]. In addition, a digital mammography system enjoys the following merits. After 

x-ray exposure, a digital image of the breast can be readily read out from the 

flat-panel detector within seconds. There is no overexposure or underexposure issue 

related with this type of image since the flat-panel detectors have a wide latitude and 

excellent linear relationship between pixel values and exposure levels. The image 

can be saved into different media. The transfer and copy of the images are easy, fast 

and reliable. A very recent study [8] shows that the digital mammography images can 

be accurately transferred via the broadband internet, which will greatly alleviate the 

problem related to the shortage of mammographers as well as improve the accuracy 

of the diagnosis. Moreover, the digital format of images makes advanced imaging 
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(e.g., breast tomosynthesis [9, 10]) and image processing techniques (such as the 

technique presented in the thesis) feasible.  

1.2 Scatter Radiation and Its Degrading Effect on the Quality of Medical 

Images 

X-ray source emits x-ray photons with different energies. Figure 1.1 shows a  
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Figure 1.1: Typical energy spectrum of an x-ray beam. The abscissa represents the 
energy levels that a photon can possibly take on, and ordinate represents the number 
of photons having the corresponding energy level. The peak voltage (in the unit of 
kVp) corresponds to maximal energy level. The spectrum shown here has a peak 
voltage of 52.5 kVp. 

typical energy spectrum of an x-ray beam. When the beam passes through the object 

to be imaged such as a breast, it interacts with the matter and gets attenuated. At the 
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diagnostic energy level, there are three basic mechanisms for x-ray attenuation: 

photoelectric effect, Compton scattering and Raleigh scattering [11]. Raleigh 

scattering, also called coherent scattering, accounts for less than 5% of the total 

interactions between x-rays and the matter. Therefore it is often omitted for 

consideration. Photoelectric effect occurs when x-ray photons are totally absorbed by 

the atoms within the tissue, as illustrated by ray 1 in Figure 1.2. Compton scattering 

occurs when the photons are deflected from their incident path with partial energy 

loss. These photons are called scattered photons or scatter radiation, as shown by ray 

2 in Figure 1.2. The rest will survive the attenuation and are called the primary 

photons or primary radiation (ray 3 in Figure 1.2). The primary radiation differs from 

location to location, which forms the contrast of various tissues in the final image. 

The scatter radiation escaped from the imaged object can either miss the detector 

or impinge on it. The latter will be inevitably detected due to the fact that the detector 

typically has broad energy sensitivity and does not effectively reject photons that 

have lost energy by scattering. The total radiation detected is thus the sum of the 

primary radiation and the scatter radiation. The detection of scattered photons in 

locations that are different from their original path will add a component of noise and 

cause the blurring of the image. 
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Figure 1.2: Illustration of possible interactions between x-ray photons and the matter 
within the diagnostic x-ray energy range. The ellipsoid represents the object to be 
imaged. Photons can be totally absorbed by the photoelectric effect (ray 1), or be 
scattered through Compton scattering (ray 2) and Raleigh scattering (a very small 
portion, thus neglected). The rest will survive the attenuation and are called the 
primary photons or primary radiation (ray 3). 

To see how detected scatter radiation adversely affect the quality of a medical 

image, let’s take a look at the simple example shown in Figure 1.3. An ellipsoid 

lesion is embedded in a uniform background. In the ideal case where no scatter 

radiation is detected, the total radiation is equal to the primary radiation. In Figure 

1.3 (a), assume radiation in the background is P0 and radiation in the lesion is P1, 

then the contrast of the lesion is C1 = (P1-P0)/P0. If in practice, a constant scatter 

radiation S is added all over the image (shown in Figure 1.3(b)), then the radiation in 

the background becomes T0 = P0+S and radiation in the lesion becomes T1 = P1+S. 

The contrast of the lesion in this image will be C2 = (T1-T0)/T0 = (P1-P0) / (P0+S) = 

C1 *[P0 / (P0+S)], which is smaller than C1. That is, the detection of scatter radiation 

reduces the contrast of the lesion. In cases where scatter is large, lesions can even be 
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obscured. 

Figure 1.3: A simple example to demonstrate the adverse effect of detected scatter 
radiation on image quality. An ellipsoid lesion is embedded in a uniform background. 
(a) The ideal image without scatter radiation is shown. (b) The actual image is shown, 
which is the sum of primary radiation and scatter radiation. The contrast of the lesion 
is decreased. 

1.3 Scatter Compensation 

In summary, the scatter radiation is a physical phenomenon, which together with 

photoelectric effect causes the attenuation of the x-ray beam. The detection of scatter 

radiation on the detector will degrade the quality of the image and thus adversely 

affect the medical diagnosis. This issue exists widely in many imaging techniques 

such as Single Photon Emission Computed Tomography (SPECT) [12], Positron 

Emission Tomography (PET) [13], and projection radiographies like chest 

radiography [14] and mammography [15]. Therefore, it is important to reduce the 

scatter radiation that is detected. Or in other words, scatter radiation needs to be 

compensated. 

There are two general categories of scatter radiation compensation methods: one 
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is hardware compensation such as the application of anti-scatter grids [16], slot 

scanning systems [17], or air gaps [18]; the other is software compensation via 

post-acquisition image processing, such as simple estimation-subtraction [19], 

convolution-subtraction [20], de-convolution [21], artificial neural networks [22], 

maximum likelihood expectation maximization (EM-MLE) [23], or Bayesian image 

estimation [24, 25]. 

 

Figure1.4: An anti-scatter grid can be added on top of the detector to remove scatter 
radiation. However, as shown by the middle ray, some primary radiation will be 
blocked as well. To maintain the image quality, the patient dose has to be increased. 

An anti-scatter grid is routinely used on a clinical screen-film mammography 

system. Figure 1.4 illustrates how an anti-scatter grid can be used to reduce the 

scatter radiation. The orientation of the grid slots is parallel to the primary radiation. 

Most primary radiation will pass through the slots and reach the detector. Scatter 

radiation, by contrast, will mostly hit on the metal slits and be absorbed by them. 
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Thus an anti-scatter grid effectively removes many scatter radiation. Its major 

drawback is that it also removes some primary radiation, as shown by the middle ray 

of Figure 1.4. To maintain the same image quality, the magnitude of the x-ray beam 

needs to be increased, which will also increase the total absorbed dose of the patient.  

By contrast, post-acquisition image processing techniques won’t change the dose 

that a patient receives. In addition, some studies [15, 24] show that they can be more 

effective than an anti-scatter grid in scatter compensation. 

A fundamental assumption behind the image processing techniques is that the 

scatter radiation can be approximated by the convolution of the primary radiation and 

a scatter kernel. It is verified both theoretically [26] and empirically [27, 28]. In the 

two-dimensional case, if Y is used to represent the matrix of detected total radiation 

at each pixel, D for the matrix of the primary radiation, S for the matrix of the scatter 

radiation, and P for the matrix of the scatter kernel, then the following equation is 

true: 

)*(*** PDPDDSDY +=+=+= δ ,                 (1.1) 

where ** is the two-dimensional convolution operator and δ is the Dirac delta 

function in a matrix form. The task of scatter compensation is equivalent to 

estimating the unknown D from the measured Y. 

One solution is to de-convolve the Equation (1.1) [21, 29, 30]. If this is done 

through the Fourier Transform (FT), then  

D = FT −1( FT (Y )
FT (δ +P)

).             (1.2) 
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Or, statistical models can be formulated to solve the problem. In the past Poisson 

noise model was used, which assumed that both primary radiation and scatter 

radiation follow Poisson distributions. The maximum likelihood estimate (MLE) of 

D in two-dimensional projection radiography was obtained by borrowing the 

iterative equation originally derived for SPECT reconstruction [23], and it was 

combined with a Gibbs prior to form the maximum a posteriori (MAP) estimator of 

D [24]. Later a revision was made on the iterative equation [26]. Although promising, 

the Poisson noise model presents some problems: 1) the primary radiation and scatter 

radiation can not be directly modeled to follow Poisson distribution; 2) due to the 

polychromatic characteristic of x-ray beam, the radiation is not only related to the 

number of photons but to the energies of the photons as well. Therefore, in this thesis, 

a new explanation is given that justifies the Poisson noise model, and a new model is 

proposed, implemented and tested on the digital mammography data for the 

reduction of detected scatter radiation. 

1.4 Overview of the Thesis 

The thesis is organized as follows. In Chapter 2, the old Poisson noise model is 

briefly introduced. The Gaussian noise model is then proposed and its analytical EM 

algorithm is derived. Moreover, the Gibbs prior is incorporated into the algorithm to 

constrain the noise in the processed image. Chapter 3 presents the latent data 

augmentation scheme to justify the Poisson noise model, the image processing 
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results obtained from both the Poisson model and the Gaussian model, their 

comparison as well as the some further evaluation of the Gaussian noise model. The 

thesis is concluded in chapter 5. 
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Chapter 2 

Materials and Methods 

2.1 Scatter Kernel  

Towards the end of the previous chapter, we mentioned that scatter radiation is often 

modeled as the convolution of the primary radiation and a scatter kernel. The scatter 

kernel is also called scatter point spread function (PSF). Experiments [31, 32] and 

Monte-Carlo simulation models [33, 34] showed that the scatter kernel can be 

represented by a circularly symmetric exponential decay curve. The curve can be 

uniquely determined by two parameters: the magnitude (M) and full width at half 

maximum (FWHM). The two parameters are illustrated in Figure 2.1 (a). Figure 

2.1(b) shows the three-dimensional representation of such a scatter kernel with M of 

1 and FWHM of 80 pixels. Throughout the thesis, matrix P is used to represent the 

scatter kernel and it is known a priori.  
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Figure 2.1: A sample scatter kernel with magnitude of 1 and FWHM of 80 pixels. (a) 
One-dimensional profile of the kernel. (b) Its three-dimensional surface plot.  

2.2 Poisson Noise Model 

When put in a statistical framework, equation (1.1) becomes: 

PBBSDEYE **)()( +=+=  ,                               (2.1) 

where )(DEB = . If we use di, si, and yi (i=1,…,N; N is the total number of pixels in 

the image) to represent the elements in the matrices D, S and Y, then Poisson noise 

model is as follows: 

 

, ,                (2.2) 

 

where di and si (i=1,…,N) given B are mutually independent. The purpose of using 

))**((~|
))**((~|
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iiiii

ii
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(B**P)i to represent ∑
=

N

j
ijj pb

1
 is two-folds: 1) (B**P)i is more straightforward than 

∑
=

N

j
ijj pb

1
 and 2) it is a reminder to us that two-dimensional convolution has a fast 

implementation in Fourier domain. We are interested in estimating B = {bi ; 

i=1,…,N}.  

In [26], a detailed derivation of MLE estimators of B through Expectation 

Maximization was provided. For conciseness, only the final iterative equation is 

shown here: 

k
nn

k

kn
k

n
k PBb

y
bb

)**( )()(
)()1(

+
⋅=+            (2.3) 

2.3 Gaussian Noise Model 

The radiation is intrinsically related to the number of photons via a conversion factor, 

which is a function of the photon energy. Even if an ideal monochromatic x-ray beam 

is available, i.e. all the photons from the x-ray source carry the same energy, the 

detected primary photons have the same energy but the detected scatter photons vary 

in their energy levels, thus causing different radiation or exposure conversion 

efficiency. This issue will be even more apparent when in practice a polychromatic 

x-ray beam as what’s shown in Figure 1.1 is usually used. In this case even the 

primary photons will take on different energy levels. The radiation or exposure will 

be related not only to the number of photons, but also to their individual energies and 
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the energy-dependent conversion factors. 

As will be discussed in the next chapter, our experimental data show that primary 

di and scatter radiation si can not be directly modeled as Poisson distribution. By 

contrast, the data approximately follow Gaussian distribution. Thus, a Gaussian noise 

model is proposed as follows: 

 

(2.4) 

 

where di, si, yi and bi have the same meaning as those in Poisson noise model (in 

block (2.2)). In addition, σi1
2 andσi2

2 represent the variance of the primary 

radiation and the variance of the scatter radiation in each pixel i. 

Due to the convolution operation, the estimation of B = {bi; i=1,…,N} directly 

from Y does not have a simple analytic form. The MLE of B is thus derived through 

the EM algorithm as follows.  

Treat the measured Y = {yi, i=1,…,N} as an incomplete dataset, and unobserved 

(D,S) = {(di,si), i=1,…,N} as a complete dataset. The di ’s and si ’s given B are 

mutually independent, therefore the complete data likelihood is: 
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Assuming {σi1
2, σi2

2 ; i=1,…,N} are known, we will get the complete data log 

likelihood by taking the logarithm on both sides, 
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The EM algorithm is comprised of two steps: one is the E-step where the 

expectation of the complete data log likelihood with respect to the present estimate 

of B is computed; and the other is the M-step where a new estimate of B is obtained 

which will maximize the computed expectation in the E-step. 

Firstly, let us consider the E-step: 
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Secondly, consider the M-step to find B(n+1) that will maximize Q(B|B(n)): 
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Solving the above equation for bk gives 
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Using B(n) to approximate B(n+1) in the right hand side, we get: 
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As a good estimate of the primary image is formed, 0)**( )()( ≈− n
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n sPB , then, 
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The same apparent form was obtained for Poisson noise model in [26]. But due to the 

different statistical models, the actual forms of dk
(n) are different and so do the 

iterative formula of bk. We will get the iterative formula of bk for the Gaussian noise 

model through the following theorem. 

Theorem 2.1 Let X ~ Gaussian(µx,σx
2), Y ~ Gaussian(µy,σy

2), independent. Let 

Z=X+Y be the third random variable. We know that Z follows a Gaussian 

distribution with mean of µz =(µx+µy) and variance of σz
2 =(σx

2+σy
2). It can be 

proved that the conditional distribution of X|X+Y i.e. X|Z is 
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Proof: According to the definition of conditional distribution: 
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Therefore, equation (2.12) becomes: 

)(
)()()|(

Zp
XpXZpZXp −

=  



17 

2

2

2

2

2

2

2
)(

2

2
)(

2

2

)(

2

2

1

2

1

2

1

z

z

x

x

y

y

z

z

x

x

y

y

e

ee

σ
µ

σ
µ

σ

µ

πσ

πσπσ
−

−

−
−

−
−

=  

)(2

)]([

2

22

2

22

2
2

2

2

2

2

2

2

1
z

yx

y
z

x
x

z

y

z

x Zx

z

yx

e σ

σσ

µ
σ
σµ

σ

σ

σ
σ

σ
σσ

π

−+−

−

=  

)),((~ 2

22

2

2

2

2

2

2

z

yx
y

z

x
x

z

y

z

x ZGaussian
σ

σσ
µ

σ
σ

µ
σ

σ

σ
σ

−+ .        

 

Because the primary and scatter radiation of each pixel given B is independent of 

those of other pixels, ],|[],|[ )()()( n
kkkk

n
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n
k BsdydEBYdEd +=== . Consider 

random variables in Theorem 2.1 to be X=dk, Y=sk and Z=yk, therefore, 
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Then equation (2.11) combines with equation (2.14) to give the following updating 

equation: 
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2.4 Incorporation of Gibbs Prior 

MLEM is known to have adverse effect on high frequency image noise. To 

overcome this, some constraints can be put on the noise level within the estimated B, 

or in other words, the prior information about B is provided. By Bayes’s Rule, 

)()|()|( BpBYpYBp ∝ ,            (2.17) 

where p(B) is the prior joint distribution of B={bi; i=1,…,N}, p(Y|B) is equal to the 

likelihood of B, and p(B|Y) is the posterior joint distribution of B given measured 

pixel values Y={yi; i=1,…,N}. 

We assume B is a Markov random process; it therefore follows a Gibbs 

distribution: 

β/)(1)( BUe
K

Bp −= ,             (2.18) 

where K is a normalizing factor which is independent of B, U(B) is the energy 

function, and β is a free parameter adjusting the relative weight of this prior on the 

maximum a posteriori (MAP) estimator of B. When β is approaching infinity, the 

MAP of B approaches MLE of B. 

The energy function is the sum of the potential function, i.e., 

∑
∈

=
Cc

c BVBU )()( ,             (2.19) 

where C is the set comprised of all cliques in the image. One clique is defined as a 

set of pixels where each one is a neighbor of all the others in the same clique. In the 

thesis, the Gibbs prior is defined over a 2nd –order neighborhood system (for each 
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pixel its north, south, east, west neighboring pixels plus its four diagonal neighboring 

pixels) with each clique comprising of two neighboring pixels. There are many forms 

of the potential function Vc(b). The one we pick up is adaptive to discontinuity 

[35-37]: 
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,          (2.20) 

where i and j are the neighboring pixels within the clique i~j. The bi and bj represent 

their intensities. δc is an adjustable parameter to regulate the cut-off frequency of the 

noise in the image. 

2.5 Image Acquisition 

A Siemens prototype digital mammography system (Mammomat Novation DR) with 

70 µm isotropic resolution was used for image acquisition. Uniform breast phantoms 

(CIRS, Inc., Norfolk, VA) were imaged with the x-ray beam generated by 28kVp and 

Mo/Mo target/filter combination. The phantoms are radiographically equivalent to a 

compressed breast of 4cm in thickness and 50% in glandular tissue density. At the 

center of the phantom there is a square dent, which mimics a high-contrast lesion in 

the digital mammography images. The images used in this thesis were acquired 

without an anti-scatter grid. Some of them have a beam stop (i.e., lead discs with 

3mm diameter) array superimposed on the breast phantoms. The beam stop method 

is a standard technique to measure the scatter radiation. Because lead discs absorb all 
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the primary radiation, only scatter radiation can arrive behind them. Figure 2.2 shows 

one such image. 

beam stops 

lesion 

background 

 

Figure 2.2: A sample breast phantom image taken with the beam stop array 
superimposed. The bright square mimics a high density lesion, based on which the 
contrast and CNR values are obtained. 

The image can then be fed into the algorithms for processing. The effect of 

processing is evaluated through various metrics, which will be discussed in the 

following subsection. 

2.6 Image Analysis Metrics 

The primary purpose of the algorithms is to estimate the expectation of primary 

radiation. Its effect is measured by the residual scatter fraction (RSF). At the same 
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time, it is desirable that the contrast-to-noise ratio (CNR) will be constrained or even 

improved after image processing. In addition, the effect of the algorithms on spatial 

resolution of the image has to be carefully monitored. In the following, we will give 

the definition of each of these metrics and how they are measured in this thesis. 

2.6.1 Residual Scatter Fraction 

Scatter fraction (SF) is defined as the ratio of the scatter radiation to the total 

radiation. Residual scatter fraction (RSF) is a quantity used to indicate how much of 

the scatter radiation remains after applying the scatter compensation algorithm. 

For the given imaging technique, two sets of images of the phantom were 

obtained. One is taken without a beam stop array, and the other is taken with the 

beam stop array. The signals behind beam stops (lead discs) are the scatter radiation. 

The total radiation, which is the sum of primary radiation and the scatter radiation, 

will reach the region without the beam stops. Thus the measured primary radiation 

(Pmeasured) is calculated by subtracting the mean radiation of a region-of-interest (ROI) 

behind a beam stop from the mean of the same ROI location without a beam stop. In 

the image processed for scatter compensation, the mean of total radiation (T) in the 

same ROI location (Testimated) is the sum of the residual scatter radiation and the 

primary radiation. Then 

estimated

measuredestimated

T
PT

RSF
−

= .           (2.21) 
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2.6.2 Contrast, Noise and CNR 

The contrast is defined as the ratio of the difference between the mean value of the 

lesion (Tlesion) and that of the background (Tbackground) to the mean of the background. 

That is, 

background

backgroundlesion

T
TT

Contrast
−

= .           (2.22) 

The noise is derived by dividing the standard deviation (STDbackground) to the 

mean (Tbackground) of the background: 

background

background

T
STD

Noise = .            (2.23) 

Contrast-to-noise ratio is the ratio of the contrast to the noise. i.e., 

background

backgroundlesion

STD
TT

Noise
ContrastCNR

−
== .         (2.24) 

2.6.3 Resolution 

Due to the nonlinearity of the algorithm, the metric like modulation transfer function 

(MTF) which is designed for a linear system can not be used here. Instead, a test bar 

comprised of alternating bright and dark lines with size corresponding to Nyquist 

frequency are embedded in the phantom image.  

The contrast improvement factor (CIF), defined as the ratio of the contrast after 

image processing to the initial contrast, is obtained for the test bar with various initial 
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contrast. If CIF is not less than 1, no resolution is lost. Otherwise, resolution is 

degraded. The minimal initial contrast that the test bar can take on with CIF no less 

than 1 is recorded as an indication of the effect of the image processing on 

resolution. 
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Chapter 3 

Results and Discussion 

3.1 Normality Check of the Data 

In our new model, primary, scatter and total radiations of each pixel in the projection 

mammography images are assumed to follow Gaussian distributions. To check 

whether Gaussian distribution is a good approximation to the real data, we analyze a 

uniform ROI outside of a beam stop (ROI1) and a uniform ROI behind a beam stop 

(ROI2) in an image acquired without an anti-scatter grid. 

ROI1 is a square region with 201x201 pixels, and its histogram is plotted in 

Figure 3.1. Visually, it follows approximately a Gaussian distribution. For further 

evaluation, the empirical quantile-quantile plot of the data with respect to a standard 

Gaussian distribution is drawn in Figure 3.2. The quantile of the data has a nice 

linear relationship with the quantile of the standard Gaussian distribution, indicating 

that the total radiation can be well represented by a Gaussian distribution.  

As stated before, the exposure of the area behind a beam stop is due to the 

scattered radiation from the neighboring regions. Figure 3.3 shows the profile of 

radiation along a line through the center of a beam stop. It has a nice flat profile for 

the scatter radiation. The circular ROI2 is selected which has a total number of 441 

pixels. Its histogram and quantile-quantile plot with respect to the standard Gaussian 
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distribution are shown in Figure 3.4 and Figure 3.5 respectively. Figure 3.5 shows 

that scatter radiation is also approximately Gaussian distribution.  

It is obvious that both total radiation shown in Figure 3.1 and scatter radiation 

shown in Figure 3.4 can not be directly modeled as Poisson distributions, since 1) the 

radiation does not take on discrete integer values only; and 2) the variance is much 

smaller than the mean, whereas a Poisson distribution has an equal variance and 

mean. Therefore, from the modeling perspective, the Poisson noise model (shown in 

block (2.2)) is problematic especially when a computation method other than EM 

algorithm is used. Luckily, if the model is modified by adding a latent data, then the 

iterative equation (equation (2.3)) derived from EM algorithm can be approximately 

true under certain assumptions. 
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Figure 3.1: The histogram of data from a uniform region-of-interest with total of 
201x201 pixels in an image acquired without an anti-scatter grid. The data is seen to 
be approximately Gaussian distribution. 
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Figure 3.2: The quantile-quantile plot of the same data as in Figure 3.1 with respect 
to the standard Gaussian distribution with mean of 0 and standard deviation of 1. The 
data fits well with the Gaussian distribution. 
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Figure 3.3: One-dimensional profile through the center of a beam stop (or lead 
disc). 
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Figure 3.4: The histogram of data from a circular region-of-interest with total of 441 
pixels behind a beam stop in an image acquired without an anti-scatter grid. The data 
is seen to be approximately Gaussian distribution. 
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Figure 3.5: The quantile-quantile plot of the same data as in Figure3.4 with respect to 
the standard Gaussian distribution with mean of 0 and standard deviation of 1. 
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Except an outlier (data value is about 1.7mR), the rest data fits well with the 
Gaussian distribution. 

3.2 Latent Data Augmentation Scheme for Poisson Model 

Assume the exposure or radiation is intrinsically proportional to the number of 

photons that produce the radiation through a constant C (E), which is dependent on 

the energies of photons E. For di, si and yi, the corresponding number of photons are 

ndi, nsi, and nyi. The expected number of photons for ndi is 

nbi. The following model is valid: 

 

            .                  (3.1) 

 

The updating equation for nbi is the same as equation (2.3): 
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which is the same updating equation for bk as equation (2.3). In other words, as long 
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as a single conversion constant rather than a set of energy dependent conversion 

constants C(E) exists between the radiation and the number of photons, The equation 

(2.3) or (3.3) derived from EM algorithm is scale-invariant regardless of the value of 

latent data C. 

3.3 Comparison between the Poisson and Gaussian Models 

Gaussian noise model is sounder than Poisson noise model for the direct modeling of 

radiations. Poisson model won’t give an accurate answer if computation methods 

which rely heavily on the accuracy of the model such as Gibbs sampling are adopted. 

However, when EM algorithm is used, the iterating equation obtained based on 

Poisson assumption can roughly be used to update the expectation of primary 

radiation. This is based on a simplification that a single conversion factor is valid for 

all radiation levels, which is not true in reality. By contrast, Gaussian noise model 

allows for the different conversion factors for different energies.  

For the uniform breast phantom, empirical value of Wi (i=1,…,N) in the 

Gaussian model as shown in equation (2.16) is 0.45. The empirical optimized scatter 

kernel P has FWHM=80pixels (i.e., 5.6mm) and M=0.52. The images are processed 

to obtain the MLE estimates from both models. Also the MAP estimates are obtained 

from both models using the same Gibbs prior with delta of 0.10.  

As a convention, in all the figures shown hereafter, the values for iteration 0 are 

the values measured on the original image without any processing.  
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Figure 3.6 shows the plots of RSF of MLE and MAP estimates from both models 

as a function of iteration number. All estimators successfully reduce the scatter 

radiation in the processed image such that RSF drops with iteration. In addition, they 

all asymptotically converge to the same value of 0.019 from the original scatter 

fraction of 0.354. Note that estimators based on Poisson noise model have a slightly 

faster convergence rate than those based on Gaussian noise model. For example, at 

iteration 2, the RSF of estimators from Poisson model already drops to 0.019, 

whereas that from Gaussian model is 0.047. 
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Figure 3.6: RSF vs. iteration plots for MLE and MAP estimator of b from both the 
Poisson noise model and the Gaussian noise model. The magnitude of scatter kernel 
is 0.52, which is same as the measured scatter-to-primary ratio (SPR). Therefore, 
RSF all drops close to zero, meaning almost complete scatter compensation. 

Figure 3.7 to Figure 3.9 illustrate how noise, contrast and CNR individually 
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change with iteration numbers. Let’s look at Figure 3.7 first. At iteration 16, the 

MLE estimators of both Poisson model and Gaussian model increase the noise from 

the original 0.021 to 0.031, which corresponds to a 47.6% of increase. The MAP 

estimator from Poisson model keeps the noise at a roughly same level as the original 

image, whereas the MAP estimator from Gaussian model decreases the noise by 

5.6%. 

Figure 3.8 show that all four estimators increase the contrast similarly. At 

iteration 16, they all increase the contrast by 26.8%. 

As shown in Figure 3.9, the initial CNR of the lesion is 47.28. After processing 

by both MLE methods, the CNR of the lesion drops to 39.13, which is equivalent to 

a 17.2% change. By contrast, the MAP estimators from Poisson and Gaussian 

models successfully increase CNR by 18.7% and 34.2% respectively.  

Table 3.1 shows the resolution results for the MAP estimates from the Poisson 

noise model and the Gaussian noise model. Both models can retain resolution for 

initial contrast greater than 2%. Poisson model retains the resolution slightly better 

than Gaussian model. It is not shown in Table 3.1 that MLE estimates from both 

models retain the resolution at all initial contrast levels. 

In summary, both MLE and MAP estimators work equally well in reducing the 

scatter radiation, while MAP estimators works better than their MLE counterparts in 

improving or constraining CNR without general loss of resolution. MAP estimator 

based on Gaussian model has a better performance in improving or constraining 

CNR than the MAP estimator based on Poisson model. 
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Figure 3.7: The noise vs. iteration plots for MLE and MAP estimator of b from both 
the Poisson noise model and the Gaussian noise model. 
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Figure 3.8: The contrast noise vs. iteration plots for MLE and MAP estimator of b 
from both the Poisson noise model and the Gaussian noise model. 
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Figure 3.9: The CNR vs. iteration plots for MLE and MAP estimator of b from both 
the Poisson noise model and the Gaussian noise model. 

 

 Poisson Model Gaussian Model 

Minimum initial contrast that 

is retainable during processing

1.8% 2.0% 

Table 3.1: The resolution results for Poisson model and Gaussian model. The square 
wave function with Nyquist frequency is used as the test object. For various initial 
contrasts, the corresponding contrast-improvement-factor (CIF) is computed at 
iteration 16. CIF no less than 1 is used as the criterion for retaining the spatial 
resolution. What is reported here is the minimal initial contrast that has CIF no less 
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than 1. 

3.4 Further Evaluation of Gaussian Noise Model 

3.3.1 Effect of the Magnitude of the Scatter Kernel  

The Magnitude of the Scatter Kernel M, which is the same as the area under the 

curve, is used to model the scatter-to-primary ratio (SPR). Using the specified 

technique, the measured SPR for the phantom is 0.52. As is shown in Figure 3.10, 

when M is specified as 0.52, the RSF drops rapidly from the initial value to a value 

close to zero, meaning a satisfactory scatter compensation effect. When M is less 

than 0.52, the scatter radiation is partially compensated. Specifically, when M equals 

zero, no scatter compensation is made. When M is larger than 0.52, the scatter 

radiation is over-compensated, i.e., RSF is less than zero.  
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Figure 3.10: The RSF vs. iteration curves for the magnitude (M) of the scatter kernel 
ranging from 0.0 to 0.65. The measured SPR value using the beam stop technique is 
0.52. M of 0.0 represents no scatter compensation. M of 0.20 and 0.40 represents 
partial scatter compensation. And M of 0.65 overcompensate the scatter radiation in 
the image.  

Figure 3.11 -3.13 illustrate how different magnitude of the scatter kernel affects 

the noise, contrast and CNR respectively. Overall, these three metrics change 

monotonically with respect to the magnitude M. More specifically, when M gets 

larger, both the noise and the contrast become larger, while the CNR gets smaller.  

For all the M values investigated, the CNR at iteration 16 is larger than the 

original value. When M is equal to 0, the CNR improves by as large as 74.7%; even 

for M of 0.65, CNR improves by 24.3%.  

Table 3.2 gives the resolution results for the Gaussian model with various 

magnitude of scatter kernel. Note that for a magnitude of zero, there will always be 
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resolution loss. For the rest magnitude values, the resolution performances are 

similar. 

If the scatter compensation is the major concern, then the magnitude should be 

chosen as close to the actual SPR value as possible. The image processed in this 

setting will improve or constrain CNR without general loss of resolution. If more 

noise reduction or more CNR improvement is desired, then a smaller magnitude can 

be selected, at the expense of partial scatter compensation. The magnitude of zero, 

however, is not a good choice because it reduces the noise and increases the CNR at 

the expense of all spatial resolution as well as no scatter compensation. 
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Figure 3.11: The noise vs. iteration curves for M ranging from 0.0 to 0.65. At each M 
level, the percentage noise reduces asymptotically. The smaller the M value is, the 
more is the percentage noise reduced from the initial value of 0.021. 



37 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

iteration

co
n

tr
a

st

M: 0.0 M: 0.2 M: 0.4 M: 0.52 M: 0.65

 

Figure 3.12: The contrast vs. iteration curves for M ranging from 0.0 to 0.65. At each 
magnitude level, the contrast increases asymptotically. The larger the magnitude is, 
the more is the contrast increased from the initial value of 0.97. 

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20

iteration

C
N

R

M: 0.0 M: 0.2 M: 0.4 M: 0.52 M: 0.65

 



38 

Figure 3.13: The CNR vs. iteration curves for M ranging from 0.0 to 0.65. At each 
magnitude level, the contrast increases asymptotically. The smaller the magnitude is, 
the more is the contrast increased. 

Magnitude 0.0 0.2 0.4 0.52 0.65 

Minimal 

initial contrast 

--- 2.7% 2.2% 2.0% 2.0% 

Table 3.2: The resolution results for the Gaussian noise model with different 
magnitude of scatter kernel. 

3.3.2 Effect of the Delta in the Gibbs Prior  

As mentioned in the subsection 2.4, the delta (δ) in the potential function of the 

Gibbs prior can be considered as a factor controlling cut off frequency in the 

processed image. The results shown in the previous sections are for δ=0.10. Now 

let’s consider δ of 0.2 and 0.05 to see how plots for the image quality metrics change. 

As expected, different δ values do not change the RSF and the contrast plots, so their 

plots are not shown. Figure 3.14, Figure 3.15 and Table 3.3 give the noise, CNR 

plots and the resolution result for delta of 0.2. Figure 3.16, Figure 3.17 and Table 3.4 

show the corresponding results for delta of 0.05. By comparing these results to 

Figure 3.7, Figure 3.9 and Table 3.1 for delta of 0.1, the trend emerges: the larger δ 

is, the more the image will be smoothed at the expense of slightly more resolution 

loss. It is understandable since more smoothed the final image is (i.e., less noise in 

the final image), more likely the details will lose. But still the final image retains a 
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reasonably good spatial resolution (for test bar of smallest possible size 

(corresponding to Nyquist frequency), all initial contrasts of 3% or larger is retained). 

When delta is 0.2, CNR in the MAP estimator based on the Gaussian model 

improves by as large as 120% without general loss of resolution. 
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Figure 3.14: The noise vs. iteration plots for MLE and MAP estimators based on 
delta of 0.2. The MAP estimators decrease the noise more than their counterparts 
based on delta=0.1 as shown in Figure 3.6. 
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 Figure 3.15: The CNR vs. iteration plots for MLE and MAP estimators based on 
delta of 0.2. The MAP estimators increase the CNR more than their counterparts 
based on delta=0.1 as shown in Figure 3.8. Also, the MAP estimator from Gaussian 
model improves CNR more than the one from Poisson model. 

 

 Poisson Model Gaussian Model 

Minimum initial contrast that 

is retainable during processing

3.0% 3.1% 

Table 3.3: The resolution results for Poisson model and Gaussian model when 
delta=0.2. 
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Figure 3.16: The noise vs. iteration plots for MLE and MAP estimators based on 
delta of 0.05. The MAP estimators decrease the noise less than their counterparts 
based on delta=0.1 as shown in Figure 3.6. 
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Figure 3.17: The CNR vs. iteration plots for MLE and MAP estimators based on 
delta of 0.05. In this case, the MAP estimators performs better than the MLE 
estimators in constraining CNR, but performs worse than their counterparts based on 
delta=0.1 as shown in Figure 3.8. But the MAP estimator from Gaussian model is 
still slightly better than the one from Poisson model. 

 Poisson Model Gaussian Model 

Minimum initial contrast that 

is retainable during processing

1.2% 1.6% 

Table 3.4: The resolution results for Poisson model and Gaussian model when 
delta=0.05.
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Chapter 4 

Conclusion 

By checking the experimental data, it was found that the Poisson noise model for 

scatter compensation in the literature [26] can not account for the radiations 

(including the primary, scatter and total radiations) directly. It will lead to an 

erroneous result for the estimation of the expected values of primary radiation if a 

computation method like Gibbs sampling is used. Luckily, due to the 

scaling-invariant property of EM algorithm with an approximation that a single 

factor rather than a set of energy dependent ones exists between the conversion of 

radiation and the corresponding number of photon, the updating equation derived 

from the old model can still be useful.  

 The histograms of radiation data indicate that they might be modeled by a 

different distribution like Gaussian. The quantile-quantile plots of the data with 

respect to the standard Gaussian distribution show that Gaussian noise model can be 

reasonably assumed. The EM algorithm based on this new model is derived and 

implemented. A MAP algorithm by incorporating a Gibbs prior is also implemented 

for better CNR in the processed images. 

The MLE and MAP estimators from the Gaussian noise model are compared 

with their counterparts based on the Poisson noise model. Results show that MAP 

estimators from both models have better CNR performance than MLE ones without a 
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significant loss of resolution. In addition, the MAP estimator from Gaussian model 

performs better than the one from Poisson model in CNR improvement. 

Further evaluation of MAP estimators from Gaussian model shows that both the 

magnitude of the scatter kernel and the delta in the Gibbs prior can be used to adjust 

the noise and CNR level in the processed images. The delta in the Gibbs prior acts as 

a major tuner of CNR without affecting RSF, whereas the magnitude of the scatter 

kernel acts as a fine tuner of CNR. Changing the magnitude of the scatter kernel will 

also affect the scatter compensation level. There is a general tradeoff between the 

CNR improvement and resolution reservation. Fortunately, for the largest CNR 

improvement (2.2 times the original CNR), the resolution is still reasonably well 

reserved. 
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